equation of state. Since y_{i} enters into the calculation of φ_{i}, an initial estimate of φ_{i} must be made, here $\varphi_{i}=1$.
(3) Solve eq 1 for g. Knowing g and g^{\prime} gives the activity coefficients, and $y_{i}(\mathrm{calcd})$ follows from $y_{i}=f_{i}{ }^{0} x_{i} \gamma_{i} / P \varphi_{i}$.
(4) Calculate new values of φ_{i} using y_{i} (calcd) from step 3. Repeat 2-4 until successive values of y_{i} (calcd) agree to within 10^{-6}. The end result is a set of values γ_{i} and $y_{i}(\mathrm{calcd})$, which are thermodynamically consistent with the $P-x$ data. Interpolation among $g\left(x_{1}\right)$ gives readily $y_{\text {(}}$ (calcd) corresponding to the $P-x$ data points. If y_{i} (expt|) agrees satisfactorily with y (calcd), the data are thermodynamically consistent.

Discussion

Equation 1 was solved using two internal collocation points. Using higher-order approximations does not alter the results significantly. The calculated activity coefficients and vapor phase mole fractions are given in Table II. The overall agreement between y_{i} (calcd) and $y_{i}($ expt $)$ is within 0.010 mol fraction. Considering the amount of impurities in the Freons and the uncertainties in the composition measurements and calculation of fugacity coefficients, the data set is thermodynamically consistent. The data may thus be included in the basis for correlating the thermodynamic properties of mixed refrigerants.

Acknowledgment

The authors are grateful to Statens teknisk-videnskabelige Forskningsrad for financial support and to Mr. Bent Johnsen for assistance with the experiments.

Nomenclature

$A=$ coefficient in Legendre polynomial
$f=$ fugacity
$g=$ reduced excess Gibbs free energy, $G^{\ddagger} / R T$
$L=$ Legendre polynomial
$P=$ pressure
$R=$ the gas constant
$T=$ temperature
$V=$ liquid molar volume
$x=$ liquid-phase mole fraction
$y=$ vapor-phase mole fraction
$\gamma=$ activity coefficient
$\varphi=$ fugacity coefficient

Superscripts

$0=$ standard state
sat $=$ at saturation
$E=$ excess property

Subscripts

1, 2, $i=$ components
$k=$ order of Legendre polynomial
$n=$ maximum degree of Legendre polynomial
$\sigma=$ along saturation line

LIterature Cited

(1) Christiansen, L. J., Fredenslund, Aa., AlChE J., 21, 49 (1975).
(2) Deutscher Kältetechnischer Verein, Arbeitsblatt 1-89 und 1-90 (1968).
(3) Fredenslund, Aa., Mollerup, J., Christiansen, L. J., Cryogenics, 13, 405 (1973).
(4) Fredenslund, Aa., Mollerup, J., J. Chem. Soc., Faraday Trans. 1, 40, 1653 (1974).
(5) Kinard, G. E., Gaumer, L. S., Chem. Eng. Prog., 69, 56 (1973).
(6) Prausnitz, J. M., Chueh, P. L., "Computer Calculations for High-Pressure Vapor-Liquid Equilibria", Prentice-Hall, Englewood Cliffs, N.J., 1968.
(7) Van Ness, H. C., Byer, S. M., Gibbs, R. E., AlChE J., 19, 238 (1973).

Received for review July 15, 1975. Accepted December 11, 1975.

A copy of the computer program used and printout of the intermediate results can be obtained from the authors for a fee of $\$ 10$.

Vapor-Liquid Equilibrium Data for the Systems $\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{C}_{2} \mathrm{H}_{6}$ and $\mathrm{CO}_{2}+\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{C}_{2} \mathrm{H}_{6}$

Aage Fredenslund,* Jørgen Mollerup, and Kenneth R. Hall ${ }^{\dagger}$
instituttet for Kemiteknik, Danmarks tekniske H申jskole, 2800 Lyngby, Denmark

Abstract

Earlier work from this laboratory resulted in isothermal vapor-liquid equillbrium (VLE) data for the systems CO_{2} $+\mathrm{C}_{2} \mathrm{H}_{4}$ and $\mathrm{CO}_{2}+\mathrm{C}_{2} \mathrm{H}_{6}$. We now report isothermal VLE data for the $\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{C}_{2} \mathrm{H}_{6}$ system and isothermal-isobaric VLE data for the ternary system $\mathrm{CO}_{2}+\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{C}_{2} \mathrm{H}_{6}$ at 263.15 and 293.15 K. The pressures range from 20 to 60 atm.

[^0]mixtures are nonideal with $\mathrm{CO}_{2}+\mathrm{C}_{2} \mathrm{H}_{6}$ and $\mathrm{CO}_{2}+\mathrm{C}_{2} \mathrm{H}_{4}$ forming minimum boiling azeotropes. In this work, we provide VLE data for the $\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{C}_{2} \mathrm{H}_{6}$ system and for the $\mathrm{CO}_{2}+\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{C}_{2} \mathrm{H}_{6}$ system at two temperatures: 263.15 K , where all components are condensable, and 293.15 K , where CO_{2} and $\mathrm{C}_{2} \mathrm{H}_{6}$ are condensable and $\mathrm{C}_{2} \mathrm{H}_{4}$ is noncondensable. Earlier work in this laboratory (4,14) produced VLE data for the systems $\mathrm{CO}_{2}+\mathrm{C}_{2} \mathrm{H}_{4}$ and $\mathrm{CO}_{2}+\mathrm{C}_{2} \mathrm{H}_{6}$. This paper then completes a reliable and self-consistent description of mixtures of these compounds.

Other laboratories have studied the component binaries. References 7, 10, 11, 15, and 18 report VLE data for $\mathrm{CO}_{2}+$ $\mathrm{C}_{2} \mathrm{H}_{4}$, while ref $3,6,7,12,13,15$, and 16 investigated $\mathrm{CO}_{2}+$ $\mathrm{C}_{2} \mathrm{H}_{6}$. Reference 9 provides data for $\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{C}_{2} \mathrm{H}_{6}$, and ref 2 predicts the low pressure behavior of the ternary. These data do not form a complete description, which led to the current study.

Table I. Vapor-Liquid Equilibrlum in the $\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{C}_{2} \mathrm{H}_{8}$ System*

T/K	Exptl values			Caled values				
	P/atm	${ }^{\mathrm{C}_{2} \mathrm{H}_{4}}$	$y_{\mathrm{C}_{2} \mathrm{H}_{4}}$	$\mathrm{yc}_{2} \mathrm{H}_{4}$	$\varphi_{\mathrm{C}_{2} \mathrm{H}_{4}}$		$\gamma \mathrm{c}_{2} \mathrm{H}_{4}$	$\gamma \mathrm{c}_{2} \mathrm{H}_{\theta}$
263.15	18.34	0.0000	0.0000	0.0000	0.861	0.800	1.109	1.000
Symmetric	19.06	0.0462	0.0706	0.0703	0.854	0.793	1.097	1.000
convention	20.48	0.1446	0.2036	0.2043	0.840	0.777	1.074	1.003
	22.03	0.2561	0.3324	0.3366	0.825	0.761	1.051	1.008
	23.96	0.3982	0.4823	0.4847	0.807	0.742	1.029	1.019
	26.82	0.6138	0.6814	0.6832	0.781	0.714	1.008	1.039
	29.10	0.7894	0.8320	0.8322	0.760	0.693	1.001	1.055
	29.86	0.8476	0.8777	0.8798	0.754	0.686	1.000	1.059
	31.05	0.9392	0.9516	0.9529	0.743	0.675	1.000	1.061
	31.94	1.0000	1.0000	1.0000	0.736	0.667	1.000	1.061
	$\left[y \text { expti) - } y^{(\text {calcd })}\right]_{a v}=0.0016$							
293.15	37.14	0.0000	0.0000	0.0000	0.818	0.704	1.000	1.000
Unsymmetric	38.46	0.0539	0.0662	0.0667	0.809	0.693	1.005	1.000
convention	40.85	0.1537	0.1772	0.1817	0.791	0.672	0.988	1.002
	43.57	0.2663	0.2968	0.3005	0.772	0.648	0.970	1.007
	45.98	0.3664	0.3936	0.3971	0.758	0.626	0.952	1.015
	46.85	0.3988	0.4251	0.4266	0.753	0.619	0.945	1.019
	47.85	0.4532	0.4722	0.4757	0.746	0.608	0.936	1.027
[((exptl) - Y (calcd) av $^{\text {] }}$] $=0.0029$				Henry's constant $=38.0 \mathrm{~atm}$				

${ }^{a}$ The mole fractions are given with four significant figures in order to avoid round-off errors; the mole fractions are only believed accurate to within 0.003 .

Table II. Vapor-Liquid Equilibrlum in the $\mathrm{CO}_{2}+\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{C}_{2} \mathrm{H}_{8}$ Systema

P/atm	xCO_{2}	YCO_{2}	$x_{\mathrm{C}_{2} \mathrm{H}_{4}}$	$\mathrm{Y}_{\mathrm{C}_{2} \mathrm{H}_{4}}$	$x_{\mathrm{C}_{2} \mathrm{H}_{6}}$	$y_{\mathrm{C}_{2} \mathrm{He}}$
$T=293.15 \mathrm{~K}$						
45.01	0.0512	0.0762	0.1956	0.2173	0.7531	0.7065
45.08	0.0839	0.1243	0.1166	0.1318	0.7995	0.7439
45.00	0.1056	0.1526	0.0632	0.0697	0.8312	0.7777
60.09	0.9006	0.8863	0.0354	0.0419	0.0640	0.0718
$T=263.15 \mathrm{~K}$						
23.05	0.0452	0.0819	0.2190	0.2763	0.7358	0.6418
23.10	0.0718	0.1311	0.1584	0.1973	0.7699	0.6716
23.11	0.1005	0.1813	0.0939	0.1145	0.8056	0.7042
28.01	0.0200	0.0304	0.6499	0.7165	0.3301	0.2532
28.11	0.1055	0.1437	0.4879	0.5286	0.4065	0.3275
28.01	0.1655	0.2245	0.3596	0.3913	0.4747	0.3841
28.03	0.2668	0.3530	0.1856	0.1968	0.5476	0.4501
28.06	0.3522	0.4476	0.0407	0.0348	0.6070	0.5085
28.04	0.9309	0.8892	0.0267	0.0411	0.0423	0.0695
28.04	0.9294	0.8882	0.0568	0.0887	0.0136	0.0230
29.98	0.0587	0.0731	0.7295	0.7692	0.2116	0.1577
30.03	0.1251	0.1583	0.6103	0.6417	0.2645	0.1998
29.97	0.2165	0.2625	0.4502	0.4666	0.3331	0.2708
30.01	0.3207	0.3779	0.2920	0.3036	0.3872	0.3184
30.05	0.4768	0.5312	0.1045	0.1093	0.4184	0.3595
30.00	0.5750	0.6111	0.0000	0.0000	0.4250	0.3889
29.83	0.7848	0.7588	0.0000	0.0000	0.2151	0.2412
29.99	0.7927	0.7572	0.0446	0.0551	0.1625	0.1875
30.09	0.7918	0.7494	0.0793	0.0982	0.1288	0.1522
30.09	0.8025	0.7509	0.1093	0.1398	0.0881	0.1091
30.10	0.8135	0.7573	0.1444	0.1882	0.0419	0.0544
32.01	0.0451	0.0529	0.9186	0.9183	0.0364	0.0288
31.95	0.0943	0.1084	0.8281	0.8322	0.0776	0.0594
32.00	0.2436	0.2620	0.6309	0.6260	0.1255	0.1119
32.00	0.3562	0.3790	0.4682	0.4744	0.1757	0.1466
31.96	0.4632	0.4739	0.3612	0.3746	0.1756	0.1514
32.00	0.5860	0.5660	0.3055	0.3307	0.1083	0.1033
32.01	0.6430	0.6041	0.3156	0.3569	0.0412	0.0388

${ }^{a}$ The mole fractions are given with four significant figures to avoid round-off errors; the data are only believed accurate to within 0.005 mole fraction.

Experimental Section

The experimental apparatus, described in detail elsewhere (5), is of the vapor recirculation type. A diaphragm compressor
circulates the vapor through stationary liquid in the equilibrium cell. Upon equilibration, the temperature, pressure, vapor composition, and liquid composition are observed. Temperature observation and control are within 0.01 K , pressure measure-

Figure 1. $\mathrm{CO}_{2}+\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{C}_{2} \mathrm{H}_{6}$ surface at 263.15 K . Curves are in the constant pressure planes: (-) corresponds to data of this work; (--) corresponds to data in (4, 14). The pressure is in atmospheres.
ment (with dead-weight gauges) is within 0.02%, and composition reproducibility on the gas chromatograph is within 0.005 in mol fraction (within 0.003 for binaries). The pressure change upon sampling (three vapor and three liquid samples for each point) was less than 0.05%.

All gases are research grade of 99.95% purity or better and received no additional purification. Alfax of Sweden is the supplier. The gas chromatograph columns were: for $\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{C}_{2} \mathrm{H}_{6}$, $5 \AA$ molecular sieve ($80-100$ mesh) $3 \mathrm{ft} \times 1 / 8 \mathrm{in}$. diameter; for $\mathrm{CO}_{2}+\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{C}_{2} \mathrm{H}_{8}$, Porapak $\mathrm{Q}(80-100$ mesh $) 10 \mathrm{ft} \times 1 / 8 \mathrm{in}$. diameter.

Consistency Test

We have chosen to compare y_{i} (exptl) with y_{i} (calcd) for the consistency test (19). To employ this test requires solution of

$$
\begin{equation*}
P=y_{1} P+y_{2} P=\frac{x_{1} f_{1}{ }^{0} \gamma_{1}}{\varphi_{1}}+\frac{x_{2} f_{2}{ }^{0} \gamma_{2}}{\varphi_{2}} \tag{1}
\end{equation*}
$$

where, for a binary mixture

$$
\begin{align*}
\gamma_{i}=\exp \{g & +(-1)^{i+1}\left(1-x_{i}\right) \\
& \left.\times\left[\left(\frac{\mathrm{d} g}{\mathrm{~d} x_{1}}\right)_{\sigma}-\frac{V^{E}}{R T}\left(\frac{\mathrm{~d} P}{\mathrm{~d} x_{1}}\right)_{\sigma}\right]\right\} \quad i=1 \text { or } 2 \tag{2}
\end{align*}
$$

subject to the constraining condition that

$$
\begin{equation*}
g=x_{1} x_{2} \sum_{k=1}^{n} A_{k} L_{k}\left(x_{1}\right) \tag{3}
\end{equation*}
$$

if the symmetric convention applies to the activity coefficients (263.15 K), or

$$
\begin{equation*}
g=\left(\frac{x_{1}}{x_{1, \max }}\right)^{2} \sum_{k=1}^{n} A_{k} L_{k}\left[\left(\frac{x_{1}}{x_{1, \max }}\right)^{2}\right] \tag{4}
\end{equation*}
$$

if the unsymmetric convention applies to the activity coefficients (293.15 K). These expressions derive from the conditions for vapor-liquid phase equilibrium and the isothermal, nonisobaric Gibbs-Duhem equation. Equation 4 is chosen from the point of view of numerical expediency, and eq 2 is readily derived from eq 1,4 , and 5 in ref 1.

The solution of eq 1-4 is iterative and proceeds as described in (1): (1) Obtain an analytical expression for the $P-x$ data using either orthogonal polynomials or a spline fit. (2) Evaluate V^{E}, t_{i}^{0}, and φ_{i} using the Redlich-Kwong equation. Initially assume φ_{i} $=1$ lacking an estimate for y_{i}. Evaluate ($\left.\mathrm{d} P / \mathrm{d} x_{1}\right)_{\sigma}$. (3) Solve eq 1 for g, use eq 3 or 4 to obtain $\mathrm{dg} / \mathrm{d} x_{1}$. Use orthogonal collocation for the solution. (4) Calculate y_{i} from $y_{i}($ calcd $)=x_{i} f_{i}^{0} \gamma_{i} / P \varphi_{i}$. (5) Iterate steps 2-4 until successive values of y_{i} (calcd) agree within 10^{-6}. The necessary thermodynamic properties, φ_{i} and V, are calculated following very closely the methods of ref 17 (pp 18-22, 44, 56-57, and 66). For the deviation from the geometric mean, k_{12}, we use 0.01 .

The end result is a set of γ_{i} and y_{i} (calcd) which are thermodynamically consistent with the $P-x$ data. If y_{i} (calcd) agree satisfactorily with y_{i} (exptl), the data are thermodynamically consistent. We apply this consistency test only to binary systems.

Results

Table I contains the data for the $\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{C}_{2} \mathrm{H}_{6}$ binary. Table II contains the $\mathrm{CO}_{2}+\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{C}_{2} \mathrm{H}_{6}$ ternary data. These are raw data and have not been smoothed in any way. The binary data, when subjected to the consistency test, display consistency within 0.002 in mol fraction. Figure 1 presents a visualization of the ternary surface at 263.15 K .

Acknowledgments

The authors appreciate the assistance of Mr. Bent Johnsen.

Nomenclature

$A_{k}=$ coefficient for Legendre polynomial
$L_{k}=$ Legendre polynomial
$P=$ pressure
$R=$ gas constant
$T=$ temperature
$V^{E}=$ excess volume
$f_{i}^{0}=$ standard state fugacity of component i
$g=$ reduced excess Gibbs function: $\mathcal{G}^{\ddagger} / R T$
$n=$ degree of Legendre polynomial
$x_{i}=$ mole fraction of component i in liquid
$x_{i, \text { max }}=$ largest experimental value of x_{i}
$y_{i}=$ mole fraction of component i in vapor
$\gamma_{i}=$ activity coefficient of component i in liquid
$\varphi_{i}=$ fugacity coefficient of component i in vapor

Subscripts

$i=$ denotes component
$\sigma=$ denotes along saturation line

Literature Cited

(1) Christiansen, L. J., Fredenslund, Aa., A/ChE J., 21, 49 (1975).
(2) Clark, A. M., Din, F., Discuss. Faraday Soc., 15, 202 (1953).
(3) Davalos, J., Anderson, W. R., Phelps, R. E., Kidnay, A. J., manuscript to be submitted for publication.
(4) Fredenslund, Aa., Mollerup, J., J. Chem. Soc., Faraday Trans. 1, 10, 1653 (1974).
(5) Fredenslund, Aa., Mollerup, J., Christiansen, L. J., Cryogenics, 13, 414 (1973).
(6) Gugnoni, R. J., Eldridge, J. W., Okay, V. C., Lee, T. J., A/ChE J., 20, 357 (1974).
(7) Hakuta, T., Nagahama, K., Suda, S., Kagaku Kogaku, 33, 904 (1969).
(8) Hamam, S. E. M., Lu, B. C.-Y., Can. J. Chem. Eng., 52, 283 (1974).
(9) Hanson, G. H., Hogan, R. J., Ruehlen, F. N., Cines, M. R., Chem. Eng. Prog., Symp. Ser., 49, 37 (1953).
(10) Haselden, G. G., Holland, F. A., King, M. B., Strickland-Constable, R. F.,

Proc. R. Soc. London, Ser. A, 240, 1 (1957).
(11) Haselden, G. G., Newitt, D. M., Shah, S. M., Proc. R. Soc. London, Ser. A, 209, 1 (1951).
(12) Khazanova, N. E., Lesnevskaja, L. C., Saxarova, A. V., Khim. Promst. (Moscow), 44, 364 (1966)
(13) Kuenen, J. P., Philos. Mag. Suppl., 5, 44, 174 (1897); Kuenen, J. P., Tobson, W. G., Philos. Mag., 4, $1+6$ (1902).
(14) Mollerup, J., J. Chem. Soc., Faraday Trans. 1, in press
(15) Nagahama, K., Konishi, H., Hoshino, D., Hirata, M., J. Chem. Eng. Jon., 7, 323 (1974).
(16) NGPA Research Report 5, Tulsa, Okla., 1971
(17) Prausnitz, J. M., Chueh, P. L., "Computer Calculations for High-Pressure Vapor-Liquid Equilibria"', Prentice-Hall, New York, N.Y., 1968.
(18) Rowlinson, J. S., Sutton, J. R., Weston, J. F., Proc. Jt. Conf. Thermadyn. Transp. Prop. Fluids, Inst. Mech. Engr
(19) Van Ness, H. C., Beyer, S. M., Gibbs, R. E., A/ChE J., 19, 238 (1973).

Received for review August 19, 1975. Accepted December 11, 1975. Aa. Fredenslund and J. Mollerup acknowledge financial support from Statens tekniskvidenskabelige Forskningsraad; K. R. Hall acknowledges financial support from NSF Grant ENG 74-23411, The American Gas Association, and PRF Grant 7594-AC 7.

The Density and Enthalpy of Mixing of Solutions of Acetonitrile and of Dimethyl Sulfoxide with Several Aromatic Hydrocarbons

Afaf H. Absood, Maha S. Tutunji, Kuei-Yen Hsu, and H. Lawrence Clever*
Department of Chemistry, Emory University, Atlanta, Georgia 30322

Abstract

The density at $30.0^{\circ} \mathrm{C}$ was measured for solutions of acetonitrile and of dimethyl sulfoxide with benzene, 1,4dimethylbenzene, and 1,3,5-trimethylbenzene. The excess enthalpy of mixing was measured by flow microcalorimetry at $25.0^{\circ} \mathrm{C}$ for the same systems plus solutions with $1,2,4-$ trimethylbenzene. All of the enthalpies of mixing are endothermic. With both acetonitrile and dimethyl sulfoxide the enthalpies of mixing at one-half mole fraction become more positive in the order benzene < 1,4-dimethylbenzene < 1,2,4-trimethylbenzene < 1,3,5-trimethylbenzene. Excess volumes were calculated from the solution densities. The excess volumes are negative in the benzene solutions, but they are positive for the 1,3,5trimethylbenzene solutions. The trends in excess enthalpy and excess volume are consistent with the observed Ilquidliquid immiscibility below $21.6{ }^{\circ} \mathrm{C}$ in $1,3,5-$ trimethylbenzene-dimethyl sulfoxide solutions.

This paper is part of a continuing series of a study of the properties of binary mixtures of aromatic hydrocarbons with polar molecules. Previous reports have been made on hydro-carbon-nitroalkane mixtures (6, 7, 8, 12). The present paper reports the density at $30^{\circ} \mathrm{C}$ and the enthalpy of mixing at 25
${ }^{\circ} \mathrm{C}$ of aromatic hydrocarbon solutiohs of acetonitrile and of dimethyl sulfoxide. Several of these solutions have been studied by others. There are reports of the density, excess volume, excess Gibbs energy, and enthalpy of mixing of ben-zene-acetonitrile mixtures (3, 4, 5) and of excess volume, enthalpy of mixing, and excess Gibbs energy of mixing of benzene-dimethyl sulfoxide mixtures $(1,9,16,18)$.

Experimental Section

Solutlon Components. Summarized in Table | are the source, purification, density, and refractive index of the solution component compounds acetonitrile, dimethyl sulfoxide, benzene, 1,4-dimethylbenzene, 1,2,4-trimethylbenzene, and $1,3,5$-trimethylbenzene. The method of acetonitrile purification was that of O'Donnell, Ayres, and Mann (22). The physical properties agree satisfactorily with accepted literature values.
Experimental Methods. Denslity. Densities were determined in a $16-\mathrm{cm}^{3}$ density bottle with a constant bore capillary neck of (1.00 ± 0.08) mm which was graduated in $1-\mathrm{mm}$ intervals for a length of 2 cm . The bottle was calibrated with freshly boiled distilled water. The density measurements were made at $(30.00 \pm 0.01)^{\circ} \mathrm{C}$.

Solutions for the measurement of density were prepared

Table I. Source, Purification, and Physical Properties of Solution Components

Compound	Source	Purification	$\mathrm{Bp},{ }^{\circ} \mathrm{C}(\mathrm{mmHg})$	$d_{30}, \mathrm{~g} \mathrm{~cm}^{-3}$	n^{25} D
Acetonitrile	Fisher certified 99 mol \%	Refluxed with $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and KMnO_{4}, distilled, acidified, filtered, distilled thru 24 -in. helice packed column	80 (742)	0.77145	1.34140
Dimethyl sulfoxide	Fisher certified ACS grade	Dried over 4A molecular sieve, fractionally crystallized, distilled from CaH_{2} thru 24-in. helice packed column	80 (20)	1.0913	$\begin{gathered} 1.4770 \\ \left(20^{\circ}\right) \end{gathered}$
Benzene	Phillips pure grade, $99 \mathrm{~mol} \%$	Shaken with successive portion of $\mathrm{H}_{2} \mathrm{SO}$, water washed until nuetral to litmus, dried over CaSO_{4}, distilled from CaH_{2} thru 24-in. helice packed column	79.3 (742)	0.86838	1.49800
1,4-Dimethylbenzene (p-xylene)	Eastman practical grade	Dried over CaSO_{4}, distilled from CaH_{2} thru 24-in. helice packed column	137.5 (742)	0.85230	1.49320
1,2,4-Trimethylbenzene (pseudocumene)	Phillips research grade	Lot no. 1345, $99.89 \mathrm{~mol} \%$, used without purification		0.86796	1.50250
1,3,5-Trimethylbenzene (mesitylene)	Eastman practical grade	Dried over CaSO_{4}, distilled from sodium thru 24-in. helice packed column	162.5 (740)	0.85572	1.49610

[^0]: Carbon dioxide, ethylene, and ethane are important compounds in the gas processing industry, and knowledge of the properties of the pure components and their mixtures is of practical importance for designing process equipment. The vapor-liquid equilibria among these compounds is complex; the
 ${ }^{\dagger}$ Chemical Engineering Department, Texas A\&M University, College Station, Texas 77843

